Série 5

Calcul intégral

Exercice1:

Calculer les intégrales suivantes :

a)
$$\int_{1}^{2} \frac{1}{x} (2x^{3} - x + 3) dx$$
 b) $\int_{0}^{4} \sqrt{x} \left(x^{2} - 3\sqrt{x}\right) dx$ c) $I = \int_{0}^{1} \frac{x^{3}}{x - 1} dx$ d) $J = \int_{-1}^{0} x^{3} \sqrt{1 - x^{4}} dx$

e)
$$\int_{e}^{e^{2}} \frac{dx}{x \ln^{3}(x)}$$
 f) $\int_{0}^{\ln(3)} \frac{1}{e^{-x} + 1} dx$ h) $L = \int_{0}^{\pi} \cos(x) \sin(2x) dx$ i) $\int_{-1}^{1} e^{x^{2}} dx$ k) $\int_{\frac{1}{e}}^{e} \frac{1}{x} |\ln(x)| dx$

Exercice2:

- 1) a) Vérifier que : $\forall x \in \mathbb{R} : x^2 + 2 = (x+1)^2 2(x+1) + 3$.
 - b) Calculer l'intégrale $M = \int_0^3 \frac{x^2 + 2}{\sqrt{x + 1}} dx$.
- 2) On considère les intégrales : $I = \int_0^{\ln(16)} \frac{e^x + 3}{e^x + 4} dx$ et $J = \int_0^{\ln(16)} \frac{1}{e^x + 4} dx$.
 - a) Calculer les valeurs de I 3J et I + J
 - b) En déduire les valeurs de I et J.

Exercice3:

- 1) Calculer à l'aide d'une intégration parties, l'intégrale : $I = \int_0^{\frac{\pi}{4}} \frac{x}{\cos^2(x)} dx$.
- 2) a) Déterminer le réels a,b et c tels que $\forall x \in \mathbb{R}^* : \frac{1}{x(x^2+1)} = \frac{a}{x} + \frac{bx+c}{x^2+1}$.

Calculer l'intégrale :
$$J = \int_1^2 \frac{dx}{x(x^2 + 1)}$$

- b) Déterminer une primitive de la fonction : $x \mapsto \frac{x}{\left(x^2+1\right)^2}$.
- c) Calculer, en intégrant par parties, l'intégrale : $K = \int_1^2 \frac{x \ln(x)}{\left(x^2 + 1\right)^2} dx$.

Exercice4:

- 1) Poser $t = \frac{1}{x}$ et calculer l'intégrale : $I = \int_{\frac{1}{e}}^{e} \frac{\ln(x)}{1+x^2} dx$.
- 2) Calculer l'intégrale $J = \int_0^{\frac{\pi}{3}} \frac{dx}{\cos(x)}$ en posant $t = \tan(\frac{x}{2})$.
- 3) a) Vérifier que : $\forall x \neq -1$: $\frac{x^2}{x+1} = x 1 + \frac{1}{x+1}$.
 - b) Calculer l'intégrale : $I = \int_0^1 \frac{x^2}{x+1} dx$.
 - c) Montrer que : $\int_0^1 \frac{\sqrt{x}}{1+\sqrt{x}} dx = 2I$. Poser : $t = \sqrt{x}$.
 - d) Calculer , par parties , l'intégrale : $J = \int_0^1 \ln(1 + \sqrt{x}) dx$.

Exercice5:

1) Soit la fonction définie par :
$$F:]0;1[\to \mathbb{R} , x \mapsto \int_{x}^{x^2} \frac{1}{\ln(t)} dt$$
.

a) Montrer que :
$$\forall x \]0,1[,\forall t \left[x^2,x\right]: -\frac{x^2}{t \ln(t)} \le -\frac{1}{\ln(t)} \le -\frac{x}{t \ln(t)}$$
.

b) Encadrer
$$F(x)$$
 puis calculer $\lim_{x\to 1^-} F(x)$.

2) Montrer que
$$F$$
 est dérivable et calculer sa dérivée .

Exercice6:

On pose:
$$\forall n \ge 0$$
: $I_n = \int_0^{\frac{\pi}{4}} \tan^n(x) dx$.

1) Calculer
$$I_0, I_1, I_2$$
 et I_3 .

2) a) Trouver une relation entre
$$I_n$$
 et I_{n+2} . Intégration par parties

b) En déduire les valeurs de
$$I_4$$
 et I_5 .

Exercice7:

On pose:
$$\forall n \ge 0$$
: $I_n = \int_0^1 \frac{x^n}{x+1} dx$.

1) Montrer
$$\lim_{n\to+\infty} I_n$$
.

2) a) Calculer
$$I_n + I_{n+1}$$
.

3) en déduire une simplification de
$$\sum_{k=1}^{n} \frac{(-1)^k}{k}$$
, $n \in \mathbb{N}^*$, puis calculer $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^k}{k}$.

Exercice8:

On pose:
$$\forall n \ge 0: I_n = \frac{1}{n!} \int_0^1 (1-t)^n e^t dt$$
.

1) Montrer:
$$\forall n \ge 0$$
: $0 \le I_n \le \frac{e}{n!}$

3) Montrer que :
$$\forall n \ge 0$$
 : $I_n = e - \sum_{k=0}^n \frac{1}{k!}$. en déduire $\lim_{n \to +\infty} \sum_{k=0}^n \frac{1}{k!}$.

Exercice9:

1) On considère la suite
$$(S_n)_n$$
 définie par : $S_n = \sum_{k=0}^n \frac{(-1)^k}{k+1}$

a) Montrer que
$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R} \setminus \{-1\}: \sum_{k=0}^{n} (-1)^k x^k = 1 - x + x^2 - \dots + (-1)^n x^n = \frac{(-1)^n x^{n+1} + 1}{x+1}$$
.

b) Vérifier que :
$$\forall k \in \mathbb{N}, \ \int_0^1 x^k dx = \frac{1}{k+1}$$
 et en déduire que : $S_n = \ln(2) + \int_0^1 \frac{(-1)^n x^{n+1}}{x+1} dx$.

2) On pose :
$$v_n = S_n - \ln(2) = \int_0^1 \frac{(-1)^n x^{n+1}}{x+1} dx$$
.

Montrer que:
$$\forall n \in \mathbb{N} : |v_n| \le \frac{1}{n+2}$$
 et en déduire la valeur de $\lim_{n \to +\infty} S_n$.